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Abstract—This paper presents an overview of the function-
alities of the Cognitive Communications Architecture (CCA)
that is currently under development at the NATO Science and
Technology Organisation (STO) Centre for Maritime Research
and Experimentation (CMRE). The CCA is designed to enable
the deployment of advanced autonomous underwater solutions
making use of smart, adaptive and secure underwater networking
strategies. The CCA and the implemented network modules have
been extensively tested, validated and improved during various
at-sea campaigns conducted in recent years, involving CMRE and
partners. The collected results show that the CCA is a robust,
reliable and effective solution supporting underwater communi-
cations and networking. It provides various functions and services
for the development of novel cognitive and secure communication
strategies, such as a cross-layer networking functionality and
the ability to easily integrate various existing communications
technologies. These aspects are key enablers in the construction
of a system that is robust to challenging conditions, such as those
posed by varying channel conditions or adversarial attacks.

Index Terms—Underwater communication, reconfigurable ar-
chitectures, software defined networking, heterogeneous net-
works, network protocols, cross layer design, cognitive radio,
cognitive communications architecture, CMRE.

I. INTRODUCTION

Increasingly novel and capable technologies are continu-

ously being introduced into the field of underwater commu-

nications and maritime robotics. As the technologies mature,

the possibility to explore novel operational scenarios becomes

available [1]. One such scenario is the use of a network of

cooperating unmanned and autonomous surface and underwa-

ter robots. The use of networked unmanned systems greatly

reduces the human risk factor, and may reduce cost with an

increased operational efficiency. The underlying connection

between physically separated, unmanned systems is realized

in a communications network.

The underlying physics upon which underwater communi-

cations relies are the limiting factor for performance. In the

underwater environment, both radio and optical signals are

greatly attenuated over short distances, with acoustic signals

being the preferred modality for distances beyond about 50m.

Acoustical solutions suffer from long propagation delays (due

to relatively slow celerity) and low data rates (due to high

This work was supported by the NATO Allied Command Transforma-
tion (ACT) Future Solutions Branch under the Autonomous Security Network
Programme.

absorption at higher frequencies). Several other impairments

can also affect acoustic transmissions and the quality of

the received signals, including multipath, Doppler, frequency-

dependent scattering effects [2].

Attempts at simply re-using communications solutions de-

veloped for the terrestrial domain have resulted low perfor-

mance solutions, reflecting the challenge presented by the

underlying physics. Novel solutions to create an Underwa-

ter Acoustic Network (UAN) have been proposed by the

networking community, addressing single-hop and multi-hop

scenarios composed by static and mobile nodes [3]–[5]. From

the wide spectrum of solutions and approaches in literature,

it is safe to state that there is no single approach fitting all

possible scenarios. This comes essentially from the fact that

the properties of underwater communication channels vary

significantly in space and time.

Although most of the works have focused on the use of

a single communication medium (i.e., acoustics) with lim-

ited cross-layering interaction, some development has been

performed in the recent past on acoustic-optical underwater

systems [6]. Aspects related to security have been marginally

investigated (or not considered at all) leaving vulnerabilities

open to potential exploitation. Furthermore, most approaches

have only been validated and evaluated via means of simula-

tions, with limited or no tests conducted at sea, thus reducing

body of work proving reliability and robustness in real, harsh

environments.

To overcome some of these challenges, CMRE has started

the development of a hybrid, cognitive and secure underwater

networking architecture, promoting the design, implementation

and testing of novel software-defined communication strate-

gies. The objective of this architecture, named the Cognitive

Communications Architecture (CCA), is to enable the creation

of an underwater system that is able to learn and make “smart”

decisions regarding the communication technologies and con-

figurations to use, thus adapting and reacting, in a distributed

and ad-hoc way, to dynamic changes in the network.

Other underwater acoustic network frameworks and archi-

tectures have been proposed in the recent years [7]–[11],

belying the increasing interest of the research community

in novel solutions for UANs and their applications. Some

of the proposed solutions are mainly simulation platforms

on which novel protocols can be implemented and tested
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so that their performance can be evaluated. Others solutions

exist to support the usage of real hardware to run in-lab

experimentation and at-sea testing. Some of these make use

of specific communication hardware while others support

the use of multiple commercial off-the-shelf solutions. Most

of the solutions currently available in the open literature,

however, have been designed mainly to support research

activities, ignoring important aspects and requirements of the

operational community, including: 1) reliability and robustness

requirements related to operational in-field activities (e.g.,

optimization with embedded hardware to reduce overhead,

delay, or software dependencies of the whole system); and

2) security as a key consideration driving the system design

(e.g., organization and protection of the information flowing

across the stack or the interaction with third party software).

These important aspects have been considered from the

design phase of the CCA, enabling the creation of a hybrid

(heterogeneous and multi-modal), cognitive (highly adaptive

and flexible) and secure (integrity and confidentiality) under-

water network. Additionally, an efficient and modular imple-

mentation of the designed architecture has been developed,

specifically addressing usage in field operations, deployment

on various types of platforms with different computational

and memory limitations, and interface with a wide range of

hardware and software.

The rest of the paper is organized as follows. Section II

introduces the Cognitive Communications Architecture pro-

posed by CMRE, along with the main CCA functionalities and

software components. Section III introduces the CCA protocol

stack modules. The CCA implementation and dependencies

are discussed in Section IV. The usage of the CCA during

various at-sea trials is discussed in Section V. Finally, a

final discussion with high-level conclusions are presented

Section VI.

II. THE COGNITIVE COMMUNICATIONS ARCHITECTURE

The development and the design of the CCA have been

derived from previous experiences with underwater com-

munications and networking solutions at CMRE [12], [13].

These works present a conceptual design of the underwater

communications systems, without an actual implementation.

The CCA enhances and implements these designs, as a

flexible solution which can be used by researchers to easily

develop, test and validate specific algorithm and strategies for

underwater communications. Additionally, the CCA supports

quick “operational prototyping” for in-field experimentation.

Following this approach, the overhead required to bring ma-

tured prototypes from the communications researchers to the

more operational side is reduced, along with the resource

requirement for maintenance and development.

Figure 1 shows the high-level CCA design and the major

components, all of which follow the Software Defined Open

Architecture approach described in [12]. The use of a layered

structure maintains a separation between different layers, thus

allowing the user to simply substitute the strategies to be

adopted at a specific layer minimizing the possible impact on

other layers. At the same time, the traditional Open Systems

Interconnection (OSI) paradigm is enhanced by the possibility

of using more than one approach (protocol module) at each

layer of the stack, and the potential to use a cross-layer inter-

action mechanism. The selection of the specific solution(s) to

use is driven by the presence of cognitive capabilities (policy

engines), enabling the stack to autonomously reconfigure and

adapt to the environmental or operational picture.
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Fig. 1: The CCA design and its major components.

The protocol modules and policy engines represent the key

component of the CCA. Data is transmitted in the form of

packets traversing across the stack, while a cross-layer mes-

saging channel is provided far a quick exchange of information

among the various CCA modules and components. Details

about the protocol modules and policy engines, along with

a description of the additional modules used for the CCA

operations, are detailed in the following subsections.

A. Protocol module

The protocol module is the building block of the commu-

nications stack, with each protocol module providing some

specific communications strategies for the specific layer it is

part of. Protocol modules interact with and operate on packets

through each layer of the stack. The specific protocol module

used in each layer is selected by the policy engine of that layer.
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Protocol modules do not interact with modules in the same

layer, but generally have access to the contextual information

provided through the cross-layer messaging channel. When

a packet is traversing down the stack (during transmission),

protocol modules may add headers to the packet which can

contain protocol-module-specific “private” data that may be

transmitted. Similarly, during reception, each module decodes

its own specific header information embedded in the received

message.

The CCA has been designed with the possibility of interfac-

ing with “closed” modules. Although protocol modules should

preferentially be open contributions to the community, the

use of proprietary or sensitive solutions that require special

protection should not be explicitly excluded. In this case the

modules can be provided as black-box “compiled” solutions

blocks. A common interface for these modules is envisioned

similar to what is done for open implementations, likely

inducing the need for writing a wrapping layer that converts

between the native interface of the proprietary module and the

open interface definition of the CCA.

This can provide a strong motivation for commercial part-

ners to use the CCA as a federated open architecture in which

their solutions can be deployed, and to contribute to the CCA

development and related standardization efforts. In such an

arrangement, providers of layer-specific solutions might ex-

plore new licensing paradigms in which they provide licensed,

compiled binaries that implement CCA standard interfaces.

Conceivably, modem vendors that currently sell hardware-

based solutions could license their modulation schemes to be

used instead on “organic” hardware of the particular CCA

deployment and configuration. This concept can be extended to

the different protocol layers, hopefully encouraging a general

decoupling effort in the market promoting greater reuse and

portability. Such an “app store“ concept could drastically

change the vendor and signal lock-in that is widely experi-

enced in the UAN device market today.

B. Policy Engine

The selection of the protocols to use in each layer at any

given instant is the responsibility of the corresponding policy

engine of that layer. The policy engine can use contextual or

performance information (or other mechanisms that embody

the “cognitive” aspects of the system) to make this choice. The

role of the policy engine is to select the appropriate protocol

module(s) through which to route a packet received from the

above layers for transmission1. A policy engine may decide

to duplicate packets and to send multiple copies down the

protocol stack, following different paths, e.g., if more than

one communication medium has to be used for the same

packet. Conversely, during reception, the policy engine must

route the packet back through the paired protocol module that

originated the packet on the transmitted node. Similarly to the

1It is also possible for a packet to have a “route specification” (defined at the
time of the generation of the packet or by the traversed layers) describing the
intended route for that packet through the stack. This allows for a configurable
soft-coupling to occur between layers that may have interdependencies.

protocol module, each policy engine can encode additional

information in its own header/footer, if required, to pass data

to the receiver nodes. The decision of how to route a packet

through the stack and how to select the protocol modules to use

is the key enabling feature for the implementation of cognitive

capabilities.

Policy Engine A

Protocol

Module A

Policy Engine B

Protocol

Module B

Protocol

Module C

Protocol

Module D

Policy Engine C

Protocol

Module E

Protocol

Module F

Fig. 2: Example of a three-layer protocol stack, black con-

nections are for outgoing packets while green ones are for

incoming packets.

Figure 2 shows a possible protocol stack configuration, with

three layers, each with a different numbers of protocol modules

at each layer. Each policy engine is connected to the one of the

upper and lower layers, if available. Additionally, the protocol

modules at each layer are connected to the policy engine of

that layer. Using this design, each policy engine is able to

first process each incoming/outgoing packet before passing it

to the appropriate protocol modules. Moreover, after being

processed by the protocol module, each policy engine can

perform additional processing on the given packet in order to

decide how it might need to be forwarded to the upper/lower

policy engine.

The role of a policy engine as the supervisor for an entire

layer raises the question about the concentration of layer-

specific intelligence. At the two extremes are layers with

policy engines that have complete knowledge of protocol

operation and performance, with less capable protocol mod-

ules, versus highly capable protocol modules with a relatively

unintelligent policy engine. In the former case more capable

policy engines must be designed and implemented in order to

handle all modules that may be configured. This increases the

complexity of the policy engine. In order to enable additional

flexibility and reduce this complexity, the use of hierarchical
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policy-engine “trees” is envisioned, as also depicted inside

each policy engine layer in Fig. 1. A set of capable policy

engines can be provided, each of them supporting a subset

of the protocol modules available at that layer. Higher layers

of the policy engine tree can then select the specific engine

and associated modules to be used over time. A possible

example of physical layer policy engine hierarchy is displayed

in Fig. 3 where dedicated policy engines are designed for

various communication mediums, which may have different

needs. Each dedicated policy engine is tasked to select the

protocol module(s) to use among the available ones, e.g.,

low/medium/high frequency radio or acoustic devices, optical

platform and device configuration to use. A higher level policy

engine is in charge of selecting the communication medium

to use and then passing the control to the selected policy.

PHY Policy Engine

      Radio

Policy Engine

    Acoustic

Policy Engine

     Optical

Policy Engine

Fig. 3: Example of physical layer policy engine hierarchy.

C. Data sharing

The sharing of data in the CCA represents one of the back-

bone capabilities of the architecture. The exchange of relevant

information allows the different layers and components of

the CCA to work in a coordinated and effective way. There

are three ways data moves within the CCA: 1) data packets

traversing across the stack; 2) cross-layer messaging channel;

and 3) shared areas of memory.

1) Packet: A packet is the elemental data unit traversing

through the stack in transmission/reception. A basic packet is

composed of a common structure of key-value pairs where

modules in the stack may read or insert data, and a payload

(see Fig. 4). The key-value map in the common area is meant

to serve as an exchange area for modules interacting with the

same packet. This allows different modules operating on the

same packet to reduce their individual overhead by using a

“public” data component that is shared. At the same time,

each of the traversed solution can add its own data in the form

of a header and/or footer. These headers/footers are “semi-

private”2 structures that allow modules to associate specific

data to specific packets, which may be used in later operations

(typically encoding). Multiple headers and footers can be

added. At the receiver side, the packet traverses up the stack

following the opposite path. Header, footer and common data

is decoded accordingly. This packet composition provides a

2Private in the sense that there are no public interfaces to other modules to
the underlying data. There are, however, no guarantees that malicious modules
in the stack cannot abuse the underlying programming language to gain access.
The CCA in general does not purport to provide defense against malicious
internal code.

Common

area
Header N PayloadHeader 1... Foo e  1 Foo e  ...Foo e  eade  

Fig. 4: The CCA packet.

natural separation between layers that lends itself to removal

of inter-layer dependencies.

2) Cross-layer messaging: A cross-layer messaging inter-

face provides a backplane over which modules can share

contextual data regarding their operation and status. This

mechanism is exposed via a publish-and-subscribe system,

where modules can publish individual messages on a variable

that may be read by any module that subscribes to updates for

that variable. As a matter of practice, the cross-layer messag-

ing channel is used to share information that is independent

of individual packets.

3) Shared area: The shared area provides direct access

to a set of variables (e.g., common settings) that can be

modified by authorized modules. Read and write permissions

are given to the various modules. This limits the access to

some variables and allows the user to define the desired

policies.

D. Support modules

Additional functionalities that are used in support to the

operations performed by the various modules include a Clock,

Timers, Logging tools, a Common dictionary and Data encod-

ing/decoding facilities.

1) Clock: This is the interface defining the way time is

used in the CCA and how to transform it in different formats.

It allows the developer to dilate the speed at which the

CCA operates, using a floating point scaling factor. This

functionality enables simulations with long real run times to

be executed in a shorter period, and generally gives the user

more flexibility when testing and debugging developments.

2) Timer: This Timer interface provides a timing utility

to modules, including the possibility to start, stop, pause and

check the status of a timer. The utility enables the execution

of an arbitrary number of callbacks when the timer expires.

The timer is also designed to be used in the case of periodic

events (e.g., dumping the status of a module/variable every n

seconds). When used in this configuration, the timer imple-

mentation tracks and corrects any cumulative delay to provide

a low-jitter periodic signal. All the timing operations are based

on the Clock abstraction, preserving the time dilation feature.

3) Logging: The Logger provides an interface to log

information when using the CCA. Information can be logged

to large number of outputs, including to the console and to

file. Each CCA module has a reference to its own logger.

Different log priorities can be defined per logger to allow fine-

grained output configuration. When a given priority is set for

the logger, information having the same priority or higher than

the specified level are logged. Like most utilities in the CCA,

the base logger interface can be implemented differently and
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dynamically loaded at launch time to provide more advanced

logging facilities.

4) Common dictionary: The Common dictionary de-

fines a common data structure for the information to be

shared within the CCA. This data structure is used by all the

modules to share information through the various inter-module

communications channels. The Common dictionary is

composed by dictionary elements, all using the same

data structure. This makes the passage of information among

modules easier and enables developers to take advantage of

specific utilities available for the dictionary elements,

e.g., the use regular expressions to search for data or param-

eters, comparison between values, and arithmetic capabilities.

New dictionary elements can be easily defined by the

user, as might be required by novel approaches, and may be

defined in two different ways: 1) the implementation of code;

or 2) the preparation of a configuration file describing the new

element. The latter option is more user friendly and is typically

preferred. The configuration file is parsed at compilation time

to automatically generate the required code.

5) Encoder: The Encoder transcodes standard

dictionary elements, such as those contained in

a packet, to binary formats suitable for transmission via the

medium of choice. Similarly to the dictionary element,

the user can specify how to encode the required information

via a configuration file. The configuration describes which

components of the dictionary element to encode, how

many bits to use, what precision to use, and which encoding

strategy to use. The configuration files are loaded by the

Encoder at execution time, eliminating the need for specific

compilation based on the possibly-changing configuration.

Additionally, the encoder is designed to give the user the

possibility to load different encoding configuration files for

each module. In this way different rules can be applied

to the same dictionary element for the various

modules, depending on the specific requirement. One of

the key functionalities provided by the encoder and the

packet interface is the capability of performing what is called

just-in-time encoding. Since some delay can be introduced

from the creation of a packet to its actual transmission3, the

just-in-time encoding feature allows the data to be encoded at

the time of transmission, thus making it possible to have the

most up-to-date, accurate information in the outgoing packet.

III. CCA DEVELOPMENT: IMPLEMENTED MODULES

During the past years the technical design and implementa-

tion of the CCA architecture has been continuously validated

and improved through in-lab testing and at-sea experiments.

Novel components and services have been defined, imple-

mented, tested and validated over time, enhancing both the

CCA infrastructural design and implementation, and the suite

of supported protocol solutions. The CCA is still under active

development, focusing on the provision of novel adaptive and

cognitive capabilities.

3Delays can be introduced by the specific solutions at the different layers,
e.g., backoff when reserving the transmission channel.

In what follows, an overview of the various protocol so-

lutions currently implemented in the CCA (approximately

ordered by macro-layers) is presented. All these solutions have

been extensively tested and validated at-sea during various

experimental campaigns (see Section V).

A. Application

This layer describes the protocol modules that generate data

or interact with external software providing data.

Control module: this module allows the user to locally change

the CCA configuration in real time. It allows users to: 1)

enable/disable the transmission of data for a given module or

all the modules; 2) change the rate of transmission/sampling

of classes of messages; 3) change the internal configuration

of CCA modules (policy engines and protocol modules); 4)

change the level of debugging of a given module or all

the modules. This module will be extended to add control

capabilities, such as the possibility to reconfigure remote nodes

(e.g. submerged assets that have no other control channels).

Position: this module collects and processes streams of data

containing position information. Currently, GPS and AIS data

in the form of NMEA messages are supported as well as

comma separated strings containing 2D or 3D data (i.e.,

latitude, longitude and depth).

Underwater AIS: this module collects GPS and AIS informa-

tion (provided by the Position module) and filters the received

data in space and time to be transmitted to submerged assets.

Unlike regular AIS, the depth and the type (i.e., ship, moored

buoy, manned or unmanned vehicle, etc.) of the assets are

included in the transmission. This allows submerged nodes

to broadcast their identification and localization data to any

other assets in communication range, both above and below

the surface. This module is largely used for water space

management, providing situational spatial awareness to assets

in the network.

Underwater METOC: a module collecting Meteorological

and Oceanographic (METOC) data to be transmitted to sub-

merged assets (e.g., temperature and wind speed). The received

information can be then processed, reported and visualized by

the operator (in case of a manned asset).

Support for distressed submarine operations: this module

collects position and vital data from a distressed submerged

asset to be broadcast in the area. The information selected for

transmission is based on the NATO ATP/MTP-57 [14] (Sub-

marine Rescue Manual) and interactions with the operational

community [15]. The received information is then reported to

be visualized by the operator.

Chat: this module implements a text chat functionality en-

abling the exchange of messages with another node (user) or

a group of nodes (users). In practice, this has been useful when

coordinating operations between manned assets (e.g. surface

ship and submarine).

DIVE: this module implements the Distributed Id assign-

ment and topology discoVEry (DIVE) protocol [16]. It is a
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distributed and ad-hoc protocol to self assign node IDs in

the network and to discover the network topology and other

relevant information. Although DIVE has been designed to

discover the network and self assign node IDs in the network,

it can be also used as leader election/consensus protocol to

take other types of decisions in the network, e.g., to define

a hierarchical organization of the network or distribute task

allocations.

MOOS: this module interacts with the Mission Oriented Oper-

ating Suite (MOOS) software [17] deployed on board various

vehicles at CMRE. The transmission requests generated by

MOOS are collected and executed by the CCA. Similarly, the

CCA provides to MOOS all the data collected by the protocol

stack modules that can be used to support MOOS applications,

such as Autonomous Underwater Vehicle (AUV) localization

and navigation algorithms [18].

Neptus: this is a module that interfaces with the Neptus

graphical interface [19] to visualize updates about the position

and status of the deployed nodes, including distress messages.

DUNE: this module interacts with the DUNE software [20]

deployed on board the vehicles developed by the LSTS group

at the University of Porto [21]. Currently, it collects position

information from the vehicle to be included in the underwater

AIS picture. Additionally, it provides the vehicle with received

AIS and distress information. AIS data can be used in support

of vehicle navigation and water space management. The dis-

tress data can be used when employing autonomous vehicles

in support of submarine escape and rescue operations, such

as during the search and localization phase. The integration

of additional functionalities in support of unmanned vehicle

operations is currently on-going.

B. Transport

A fragmentation module has been designed and imple-

mented for this layer. This module takes care of fragmenting

a large data message into smaller fragments, so that generated

packets comply with the specific Maximum Transmission

Unit (MTU) for a given link, similarly to the fragmentation

algorithm in the Internet Protocol. The fragments are then

reassembled by the receiving node to recreate the original

larger message.

C. Network

A flooding routing solution has been developed to forward

data in the network. Each node immediately re-transmits a

received packet (unless it is a duplicate) without the need

of any additional control messages. To reduce the number of

possible collisions, the implemented solution lets a node wait

for a random time before forwarding the packet. Additionally,

the user can define a probability of forwarding and a maximum

number of hops to be traversed by a packet, in order to reduce

duplication. Moreover, it is possible to define a static route for

packets addressed to a specific destination node.

D. Data link

This section describes the solutions currently implemented

in what would be classified as the Data link layer in the

OSI model, relating to data queuing and Medium Access

Control (MAC).

Priority queue: this modules implements a priority queue for

the received messages4. For each combination of message type

(identifying a specific class of messages) and source address, a

different queue is used. For each queue various parameters can

be specified including: 1) the priority of the message; 2) the

maximum capacity of queue; 3) if a new message has to be

preferred to the ones already in the queue; 4) if some delay has

to be applied between two consecutive polling of packets from

the same queue for transmission; 5) the maximum number

of seconds a message can stay in the queue (time to live)

before being discarded; 6) if the message can be combined

with other messages and transmitted in a single packet, or if

a stand-alone transmission is required. The requested queue

information can be added at the time of the creation of the

packet or before it reaches the queue module. This enables

adaptation in the processing of the priority queue for different

types of messages over time. Variations for a given type may

occur due to the assigned task or execution status of a task,

environmental parameters, the status of the node and of the

network.

ALOHA: this module implements the ALOHA-based MAC

protocol described in [22]. This is a simple protocol for

channel access that has the advantage of low overhead, as

it does not perform extensive handshaking to avoid collisions.

When a node has a data packet to transmit, it first checks

whether the channel is idle or busy. If the channel is free, it

starts the packet transmission, while is the channel is busy,

the node delays the transmission according to a back off

mechanism (linear, in the current implementation).

TDMA: this module implements a Time Division Multiple

Access (TDMA) MAC protocol. It allows several nodes to

share the same communication medium by dividing the time

into different slots. Typically each slot is assigned to a specific

node, with the duration of all slots being equal. The nodes

transmit successively, each node using its own time slot. The

combination of the allocated slots is called a frame and it

repeats over time. A fixed guard time is usually placed between

slots reduce the risk of interference. The TDMA solution

implemented in CCA enhances the typical TDMA design

allowing the user to configure the TDMA frame in a more

flexible way. The user can define the number of slots to use,

the duration of each slot and of its guard time, the assignment

of a slot to a single node, a set of nodes or to all nodes. Using

this design, it is possible, if needed, to reserve more time and

more slots for some of the nodes which have more data to

transmit with respect to the others. Similarly it is possible

to enable concurrent transmissions (for nodes operating in

4The CCA priority queue module was inspired by the pAcommsHandler
queue available for MOOS [17].
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different areas), and the use of a hybrid approaches: ALOHA-

based solutions could be used in slots used by multiple nodes,

while regular TDMA for slots assigned to a single node.

E. Physical

This layer describes the solutions implemented in the CCA

to interact with the supported low-level communication inter-

faces and the CMRE channel simulator.

JANUS: this module implements a driver to transmit and

receive JANUS messages [23]. It interacts with the JANUS-

based software responsible for encoding/decoding messages.

The implemented driver converts the data contained into CCA

packets into the format used by the JANUS software and vice

versa. It currently supports all the available JANUS plugins:

1) regular payload transmission; 2) underwater AIS; 3) under-

water METOC; 4) support in distress submarine operations;

and 5) first contact and language switching.

Evologics: this module implements a driver to configure, trans-

mit and receive message using the S2C Evologics modem [24].

Firmware version 1.7 (and compatible subversions) is currently

supported, including the use of extended notifications and syn-

chronous instant messages (to request a transmission to occur

at a specific time). Regular and Ultra-Short BaseLine (USBL)

modem models are supported.

Radio: this module implements a driver to transmit and receive

messages using a Radio antenna accessible via a TCP, UDP

or serial stream connections. When a UDP connection is used,

it also supports the transmission of multicast messages.

Channel simulator driver: this module implements a driver

to interact with a CMRE channel simulator, which is used

for development, testing and debugging of new solutions. The

channel simulator can be configured with different channel

parameters and interference models, in particular those relating

to end-to-end comms performance. The use of such simulators

is a prototyping and derisking tool, allowing for quick first

evaluations of system performance in controlled environments,

where different network topologies and configurations can be

easily exercised before going to sea.

F. Utilities and services

Several utilities and services exist as part of the CCA design

(the right column of Fig. 1) that support the core operation of

the components (policy engines and protocol modules) that

form the basic stack. These tools don’t participate directly in

packet handling, but instead exist as services or capabilities

that may be invoked by those client components.

Cooperative ranging: this module implements a cooperative

approach for range estimation in support of vehicle navi-

gation [18]. This approach is based on two-way Time of

Flight (TOF) measurements and aims at reducing the overhead

and delays in obtaining updates, while efficiently scaling to

large networks. No fixed interrogation scheme is assumed

and no synchronized clocks or dedicated instrumentation is

required. When a node wants to collect a range estimation, it

transmits a ranging request in broadcast. All the nodes receiv-

ing the request can decide to reply. Replying nodes coordinate

to avoid collisions at the requesting node introducing some

random delay before sending their message.

Crypto: this module implements the encryption functionality.

Currently, the symmetric key cryptography implementation

uses the Advanced Encryption Standard (AES) in combination

with the Galois Counter Mode (GCM) approach [25]. Different

hash tag sizes may be selected for message authentication and

integrity verification.

G. Policy engines

Initial policy engines have been designed and implemented

with basic selection policies, including: the usage of routes

depending on the message type (statically configured or ad-

justed by the traversed module of the stack); the forwarding

of copies of the packet to multiple protocol modules in

case of multiple non-interfering communication media; the

encoding of header information for correct processing at the

receiver in case of a dynamic and adaptive selection; and

the forwarding of messages received by a communications

interface for retransmission by the available interfaces, based

on rules defined by the user. The design of more adaptive,

intelligent policies is on-going. This line of research also

includes:

• the definition of parameters (e.g., environmental data,

node status, energy budget, message priority) and settings

to be shared among the modules for “smart” and adaptive

selection;

• the way to use, process and fuse the collected informa-

tion;

• how to adapt and when to change selection strategy in

optimal ways;

• how to generalize and abstract the concept of module

performance such that coupling between policy engines

and protocol modules is minimized.

Additional details about the current activities policy engine

design activities at the physical layer (decision-tree aided

adaptive modulation) and for the integration/interaction of

upper and lower layers of the stack can be found in [26] and

in [27], respectively.

IV. CCA IMPLEMENTATION AND DEPENDENCIES

The CCA is written in C++14. The core package design

makes heavy use of the bridge pattern [28], promoting flexi-

bility and reusability of components. From the early days of

design, special consideration has been given to the separation

of interface and implementation to both promote sharing and

reuse but allow for intellectual property protection.

The CCA can be compiled and linked under a Linux envi-

ronment using CMake [29] and a compiler compatible with

the C++14 standard. The CCA runs as single multi-threading

program, where independent threads are used for each packet,

cross-layer messaging interface, and timer interface. The CCA

hides the complexity of the multi-threading implementation,
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(a) eFolaga AUV. (b) SPARUS AUV. (c) OEX AUV. (d) Gulliver ASV.

(e) Waveglider. (f) Portable drifting gateway buoy. (g) Moored buoy. (h) Manta portable device.

Fig. 5: Some of the CMRE assets using the CCA in support to underwater communications.

allowing developers to focus on the creation of novel commu-

nications functionalities and solutions with the support of CCA

backbone components. Backbone components are compiled as

static or dynamic libraries while protocol strategies (i.e., policy

engines and protocol modules) are compiled as dynamically

linked libraries that can be loaded at run time as plugins.

In order to run the CCA only few additional libraries are

required by the CMRE backbone implementation: log4cpp

for logging and libconfig++ for configuration file han-

dling5. The configuration file used for both the dictionary

element and the Encoder is based on the JavaScript Object

Notation (JSON) [30] open-standard format, which is largely

used by the community of developers.

The limited inherent dependencies of the CCA simplifies

greatly the effort of cross-compilation for embedded systems.

CCA has been successfully cross-compiled to run on var-

ious ARM-based embedded solutions, including Raspberry

Pi2 [31], Raspberry Pi3 [32] and Beaglebone Black [33].

Additional dependencies may be introduced by specific

modules. In order to use the cryptographic module, the en-

cryption library LibCryptopp is required. The Automatic

Identification System (AIS) and National Marine Electronics

Association (NMEA) modules make use of libraries to parse

the NMEA data. The use of the JANUS module obviously

induces the requirement for the JANUS library [34] and its

sub-dependencies (Alsa and FFTW).

To facilitate handling these dependencies, the CCA build

ecosystem has scripts to compile the code that automatically

searches in the filesystem for the required libraries. If a library

is not found, the target module is not compiled and a warning

message is reported to the user.

V. CCA EXPERIMENTAL RESULTS

Over the past four years, the CCA and the various im-

plemented capabilities have been validated and evaluated ex-

5According to the bridge pattern, the user could define and implement its
own logging and configuration strategies without depending on these libraries.

tensively using the CMRE Littoral Ocean Observatory Net-

work (LOON) and during various at-sea campaigns together

with partners and collaborators, e.g., REP16-Atlantic, REP17-

Atlantic, Dynamic Monarch 2017, and CommsNet17.

During these experiments, the CCA was successfully in-

stalled on different, heterogeneous CMRE assets (Fig. 5),

including AUVs, Autonomous Surface Vehicles (ASVs),

portable and moored units. Additionally, the CCA and its

solutions were installed on board of partners platforms: the

NRP Arpão submarine during the REP series; the ESPS

Tramontana submarine and various rescue ships during the Dy-

namic Monarch 2017 exercise; two AUVs from FEUP (Fig. 6)

during REP17-Atlantic.

Fig. 6: The LAUV vehicles from FEUP.

During the various experimental activities, the CCA was

used to run all the networking experiments for the investigated

solutions, mostly focusing on: 1) the DIVE protocol; 2) the

cooperative ranging and networked long baseline (NetLBL)

solution; 3) the use of JANUS-based services for Underwater

AIS, METOC, chat and support of distressed submarine activ-

ities; 4) the testing of the crypto module as a service to other

modules; and 5) the deployment of a persistent underwater
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network6. In all the considered scenarios and configurations

the CCA architecture has proven to be flexible enough to

enable the implementation and integration of the developed

modules.

In what follows quantitative measurements to validate the

robustness, flexibility and reliability of the implemented com-

munication architecture are presented.

A. Metrics

To validate and evaluate the performance of the CCA

implementation, the following metrics have been considered:

• CPU usage: Average and maximum CPU usage during

the conducted experiments. It is expressed as a percentage

with respect to the total CPU capacity;

• RAM usage: Average and maximum RAM memory

usage while performing the different experiments. It is

expressed as a percentage with respect to the total RAM

capacity;

• Delay: Average and maximum delay at the transmission

and reception time. This delay includes the time for

the packet to be encode/decode and processed by the

different layers across the protocol stack. It is expressed

in milliseconds.

These metrics have been selected to evaluate the additional

load and overhead introduced by the proposed system to the

networking operations. Being able to design and implement

a lightweight architecture is important as such systems fre-

quently must be deployed on small, energy efficient, compact

and inexpensive devices. These devices can then be easily

installed in small housings (e.g., modem casings and on

autonomous underwater and surface vehicles), thus easing test

preparation, and reducing costs and time related to deployment

activities. Additionally, we consider these metrics to be early

descriptors of the performance of the implementation itself

as a software infrastructure — clearly metrics regarding the

efficacy of a given communications infrastructure are part

of an largely-orthogonal conversation relating to the specific

protocols (or combination of protocols) deployed.

B. Results

Various experiments have been conducted during the various

sea trials having the CCA running on capable hardware as well

as cheap, less-capable embedded platforms. In what follows

we present the results for some of the organic platforms used

for CCA operations:

Laptop: 4 CPU i7-2640M @2.8GHz and 8GB of RAM;

SECO [38]: x86 platform equipped with a Dual Core proces-

sor @1.0GHz and 4GB of RAM;

RaspberryPi2: ARM platform equipped with a Quad-core

processor @900MHz and 1GB of RAM.

Table I shows the collected results for the different consid-

ered assets. All the values are averaged over many days of

6For the interested readers, details about the REP16-Atlantic activities can
be found in [35], [36], REP17-Atlantic and Dynamic Monarch in [15], and
CommsNet17 in [37].

continuous operations with the transmissions and reception of

tens of thousands messages, using both JANUS and Evologics

modems.

Platform CPU Usage RAM Usage Delay Tx Delay Rx

Avg (max)% Avg (max) ms
Laptop 0.5 (1.3) 0.4 (0.5) 0.6 (2) 0.9 (3)

SECO 0.9 (1.8) 0.6 (1.2) 1.2 (2.5) 1.7 (3.5)

RaspberryPi2 1.3 (2.0) 1.1 (2.2) 1.9 (3.2) 2.1 (3.8)

TABLE I: Quantitative measurements of the CCA imple-

mented communications architecture running on various as-

sets.

The collected results clearly show that the usage of the

resources introduced by the CCA backbone modules and

by the protocol solutions is minimal for all the considered

platforms. This gives the developer headroom to run additional

software (vehicle mission planning, data processing, sensor

monitoring, etc.) on the same systems executing the CCA,

without the requirement for additional or dedicated platforms.

Similarly, the introduced delays are very low, especially when

compared with typical delays of acoustic transmissions and

propagation in water.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented the CMRE Cognitive Communications

Architecture. The CCA currently represents a robust, reliable

and effective solution to support underwater communications

and networking research. It provides various functions and

services to support the development of novel, cognitive, and

secure strategies, such as the cross-layer networking function-

alities and the support for different available communications

technologies. These aspects are key enablers to automatically

adapt to varying channel conditions which may arise due to

environmental factors or malicious activities. The CCA has

been tested and validated during various sea campaigns on

board of a variety of heterogeneous maritime platforms.

Although additional refinements can be investigated for the

CCA backbone implementation, the main effort, and area of

active CMRE research, will focus on the cognitive components

of the CCA. The effort of CMRE to implement, test, validate

and ultimately integrate the development of software and hard-

ware components represent a step ahead in the direction of the

creation of an advanced autonomous maritime communication

system. This system has the potential to enable diverse and

highly effective maritime operations.

One of the CMRE objectives is to foster standardization

and interoperability. Therefore there is the intent to share

the CCA open interfaces with the community in order to

build a shared ecosystem towards the design and development

of interoperable software-defined and cognitive solutions. It

should be also possible for industrial partners to join this

effort by providing licensed or otherwise closed solutions to

be integrated as modules of the architecture, thus opening new

market and collaboration opportunities.
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